
•
•

Chapter 25
CoS Configuration Guidelines
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

To configure CoS properties, you can include the following statements at the [edit
class-of-service] hierarchy level of the configuration:

class-of-service {
classifiers {

type classifier-name {
import (classifier-name | default);
forwarding-class class-name {

loss-priority (low | high) code-points [alias | bits];
}

}
}
code-point-aliases {

(dscp | exp | ieee-802.1 | inet-precedence) {
alias-name bits;

}
}
drop-profiles {

profile-name {
fill-level percentage drop-probability percentage;
interpolate {

drop-probability value;
fill-level value;

}
}

}
forwarding-classes {

queue queue-number class-name priority (low | high);
}
forwarding-policy {

next-hop-map map-name {
forwarding-class class-name {

next-hop [next-hop-name];
lsp-next-hop [lsp-regular-expression];

}
}
class class-name {

classification-override {
forwarding-class class-name;

}
}

}

CoS Configuration Guidelines 419

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

420
interfaces
interface-name {

scheduler-map map-name;
unit logical-unit-number {

classifiers {
(dscp | exp | ieee-802.1 | inet-precedence) (classifier-name | default);

}
forwarding-class class-name;
rewrite-rules {

(dscp | exp | inet-precedence) (rewrite-name | default);
}

}
}

}
rewrite-rules {

(dscp | exp | inet-precedence) rewrite-name {
import (rewrite-name | default);
forwarding-class class-name {

loss-priority (low | high) code-point (alias | bits);
}

}
}
scheduler-maps {

map-name {
forwarding-class class-name scheduler scheduler-name;

}
}
schedulers {

scheduler-name {
buffer-size (percent percentage | remainder);
drop-profile-map loss-priority (low | high) protocol (non-tcp | tcp | any)

drop-profile profile-name;
priority (low | high | strict-high);
transmit-rate (rate | percent percentage | remainder | exact);

}
}

}

The following RFCs define the standards supported by certain aspects of the CoS software:

RFC 2474, Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6
Header s

RFC 2598, An Expedited F orwarding PHB (see also draft-ietf-diffserv-rfc2598bis-01.txt)

RFC 2597, Assured Forwarding PHB Gr oup

The JUNOS software supports only two loss priorities and, by default, supports only one
assured forwarding (AF) class, although you can configure more at the expense of other class
types.

The following RFC is not supported:

RFC 2983, Diffserv and Tunnels
JUNOS 5.4 Internet Software Configuration Guide: Interfaces and Class of Service

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Hardware Capabilities and Limitations
Hardware Capabilities and Limitations

Juniper Networks T-series platforms and M-series platforms with enhanced FPCs can use an
expanded range of CoS capabilities as compared to M-series platforms that employ the
earlier FPC model. Table 23 lists these differences between the original FPCs and the
enhanced FPCs.

Table 23: CoS Hardware Capabilities and Limitations

Feature
M-series
FPCs

M-series
Enhanced
FPCs

T-series
FPCs Comments

Classifiers

Limit per FPC 1 8 64 For M-series enhanced FPCs, four classifiers are
shared between DSCP and IP and four are shared
between MPLS EXP and IEEE 802.1p.

dscp no yes yes For T-series FPCs, the loss priority cannot be
arbitrarily decoded from the code point.

ieee-802.1p no yes yes For T-series FPCs, the loss priority cannot be
arbitrarily decoded from the code point.

inet-precedence yes yes yes For M-series original FPCs and T-series FPCs, the
loss priority cannot be arbitrarily decoded from the
code point.

mpls-exp yes yes yes For T-series FPCs, the loss priority cannot be
arbitrarily decoded from the code point.

For M-series original FPCs, fixed classification bit 0
indicates loss priority; bits 1 and 2 indicate queue
number (forwarding class).

Rewrite Markers

Limit per FPC none none 64

dscp no yes yes For T-series FPCs, you cannot use loss priority to
select the rewrite code point. It is based on
forwarding class only.

ieee-802.1 no yes yes For M-series enhanced FPCs and T-series FPCs,
fixed rewrite loss priority determines the value for
bit 0; queue number (forwarding class) determines
bits 1 and 2.

inet-precedence yes yes yes For T-series FPCs, you cannot use loss priority to
select the rewrite code point. It is based on
forwarding class only.

mpls-exp yes yes yes For T-series FPCs, you cannot use loss priority to
select the rewrite code point. It is based on
forwarding class only.

For M-series original FPCs, fixed rewrite loss
priority determines the value for bit 0; queue
number (forwarding class) determines bits 1 and 2.

Queuing

Priority no yes yes

Drop Profiles

Limit per FPC 2 16 32

Per queue no yes yes

Per loss priority yes yes yes

Per TCP bit no yes yes
CoS Configuration Guidelines 421

Define Code-P oint Aliases

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

422
This chapter includes the following sections:

Define Code-Point Aliases on page 422

Configure Forwarding Classes on page 425

Classify Packets by Behavior Aggregate on page 427

Configure Scheduling Policy Maps on page 429

Configure RED Drop Profiles on page 430

Rewrite Packet Header Information on page 431

Configure CoS-Based Forwarding on page 433

Example: Configure Class of Service on page 436

Define Code-Point Aliases

A code-point alias is a name you assign to a set of DiffServ code-point (DSCP) bits. When you
configure classes and define classifiers, you can refer to the code points by these alias names.
You can configure user-defined classifiers in terms of alias names. If the value of an alias
changes, it alters the behavior of any classifier that references that alias.

Table 24 shows the default mappings between the bit values and standard aliases. For
example, it is widely accepted that the alias for DSCP 101110 is ef (expedited forwarding).

Table 24: Default DSCP Mappings

DiffServ Code Designator Mapping

DSCP Code Points:

ef 101110

af11 001010

af12 001100

af13 001110

af21 010010

af22 010100

af23 010110

af31 011010

af32 011100

af33 011110

af41 100010

af42 100100

af43 100110

be 000000

cs1 001000

cs2 010000

cs3 011000
JUNOS 5.4 Internet Software Configuration Guide: Interfaces and Class of Service

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Define Code-Point Aliases
You use code-point aliases to do the following:

Define an alias for bits that currently have no alias

Define multiple aliases for the same bits

Redefine an alias name to mean a different set of bits than the default

cs4 100000

cs5 101000

nc1/cs6 110000

nc2/cs7 111000

MPLS EXP Code Points:

be 000

be1 001

ef 010

ef1 011

af11 100

af12 101

nc1/cs6 110

nc2/cs7 111

IEEE 802.1 Code Points:

be 000

be1 001

ef 010

ef1 011

af11 100

af12 101

nc1/cs6 110

nc2/cs7 111

Legacy IP Precedence Code Points:

be 000

be1 001

ef 010

ef1 011

af11 100

af12 101

nc1/cs6 110

nc2/cs7 111

DiffServ Code Designator Mapping
CoS Configuration Guidelines 423

Define Code-P oint Aliases

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

424
To define a code-point alias, include the code-point-aliases statement at the [edit
class-of-service] hierarchy level:

[edit class-of-service]
code-point-aliases {

(dscp | exp | ieee-802.1 | inet-precedence) {
alias-name bits;

}
}

For example, you might set up the following configuration:

[edit class-of-service]
code-point-aliases {

dscp {
my1 110001;
my2 101110;
be 000001;
cs7 110000;

}
}

The sample configuration produces this mapping:

user@host#show class-of-service map name type dscp
 Map: name Type: dscp

101110 ef/my2
001010 af11
001100 af12
001110 af13
010010 af21
010100 af22
010110 af23
011010 af31
011100 af32
011110 af33
100010 af41
100100 af42
100110 af43
000001 be
001000 cs1
010000 cs2
011000 cs3
100000 cs4
101000 cs5
110000 nc1/cs6/cs7
111000 nc2
110001 my1
JUNOS 5.4 Internet Software Configuration Guide: Interfaces and Class of Service

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Configure Forwarding Classes
The following notes explain certain results in the mapping:

my1 110001:

110001 was not mapped to anything before, and my1 is a new alias.

Nothing in the default mapping table is changed by this statement.

my2 101110:

101110 is now mapped to my2 as well as ef.

be 000001:

be is now mapped to 000001.

The old value of be, 000000, is not associated with any alias. Packets with this
DSCP value are now classified to the default forwarding class.

cs7 110000:

cs7 is now mapped to 110000, as well as nc1 and cs6.

The old value of cs7, 111000, is still mapped to nc2.

Configure Forwarding Classes

Forwarding classes replace output queues from the previous CoS configuration command set.
You assign each forwarding class to an internal queue number by including the
forwarding-classes statement at the [edit class-of-service] hierarchy level:

[edit class-of-service]
forwarding-classes {

queue queue-number class-name priority (high | low);
}

}

Table 25 shows the four forwarding classes defined by default:

Table 25: Default Forwarding Classes

You cannot commit a configuration that assigns the same
forwarding class to two different queues.

Queue Forwarding Class Name

queue 0 best-effort

queue 1 expedited-forwarding

queue 2 assured-forwarding

queue 3 network-control
CoS Configuration Guidelines 425

Configur e Forwarding Classes

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

426
The following rules govern queue assignment:

If classifiers fail to classify a packet, the packet always receives the default classification
to the class associated with queue 0.

The number of queues is dependent on the hardware plugged into the chassis. CoS
configurations are inherently contingent on the number of queues on the system. Only
two classes, best-effort and network-control, are actually referenced in the default
configuration. The default configuration works on any platform.

CoS configurations that specify more queues than the platform can support are not
accepted. The commit fails with a detailed message that states the total number of
queues available.

All default CoS configuration is based on queue number. The name of the forwarding
class that shows up when the default configuration is displayed is the forwarding class
currently associated with that queue.

This is the default configuration for forwarding-classes:

[edit class-of-service]
forwarding-classes {

queue 0 best-effort;
queue 1 expedited-forwarding;
queue 2 assured-forwarding;
queue 3 network-control;

}

If you reassign the forwarding-class names, the best-effort forwarding-class name
appears in the locations in the configuration previously occupied by network-control as
follows:

forwarding-classes {
queue 0 network-control;
queue 1 assured-forwarding;
queue 2 expedited-forwarding;
queue 3 best-effort;

}

All the default rules of classification and scheduling that applied to queue 3 still apply.
Queue 3 is simply now renamed best-effort.

In the current default configuration:

Only IP precedence classifiers are associated with interfaces.

The only classes designated are best-effort and network-control.

Schedulers are not defined for the expedited-forwarding or assured-forwarding
classes.

You must make a conscious effort to classify packets to the expedited-forwarding or
assured-forwarding class and define schedulers for these classes.
JUNOS 5.4 Internet Software Configuration Guide: Interfaces and Class of Service

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Classify Packets by Behavior Aggregate
Override Fabric Priority Queuing

For T-series platforms only, you can override automatic fabric priority queuing. For egress
interfaces, fabric priority queuing matches the queue priority you assign at the [edit
class-of-service schedulers scheduler-name] hierarchy level. High-priority egress traffic is
automatically assigned to high-priority fabric queues. Likewise, low-priority egress traffic is
automatically assigned to low-priority fabric queues.

You can override the default fabric priority queuing of egress traffic by including the priority
statement at the [edit class-of-service forwarding-classes queue queue-number class-name]
hierarchy level:

[edit class-of-service forwarding-classes queue queue-number class-name]
priority (low | high);

Classify Packets by Behavior Aggregate

The simplest way to classify a packet is to use behavior aggregate classification. The DSCP or
IP precedence bits of the IP header convey the behavior aggregate class information. The
information might also be found in the MPLS EXP bits or IEEE 802.1p CoS bits.

Table 26 shows the default system classification scheme for the well-known DSCPs:

Table 26: Default Behavior Aggregate Classification

DSCP Forwarding Class PLP

ef expedited-forwarding low

af11 assured-forwarding low

af12 “ high

af13 “ high

af21 best-effort low

af22 “ low

af23 “ low

af31 “ low

af32 “ low

af33 “ low

af41 “ low

af42 “ low

af43 “ low

be “ low

cs1 “ low

cs2 “ low

cs3 “ low

cs4 “ low

cs5 “ low

nc1/cs6 network-control low

nc2/cs7 “ low

other best-effort low
CoS Configuration Guidelines 427

Classify Packets by Beha vior Aggregate

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

428
All af classes other than af1X are mapped to best-effort, since RFC 2597 prohibits a node
from aggregating classes. In effect, mapping to best-effort implies that the node does not
support that class.

To define new classifiers for all code-point types, include the classifiers statement at the
[edit class-of-service] hierarchy level:

[edit class-of-service]
classifiers {

(dscp | exp | ieee-802.1 | inet-precedence) classifier-name {
import [classifier-name | default];
forwarding-class class-name {

loss-priority (low | high) code-points [alias | bits];
}

}
}

A classifier takes a specified bit pattern as either the literal pattern or as a defined alias and
attempts to match it to the type of packet arriving on the interface. If the information in the
packet’s header matches the specified pattern, the packet is sent to the appropriate queue,
defined by the forwarding class associated with the classifier.

You can use any table, including the default, in the definition of a new classifier by including
the import statement. The imported classifier is used as a template and is not modified.
Whenever you commit a configuration that assigns a new class-name and loss-priority value
to a code-point alias or set of bits, it replaces that entry in the imported classifier template. As
a result, you must explicitly specify every code point in every designation that requires
modification.

You can assign the classification map to a logical interface by including the forwarding-class
statement in the following configuration:

[edit class-of-service]
interfaces {

interface-name {
unit logical-unit-number {

forwarding-class class-name;
}

}
}

You can use interface wildcards for interface-name and logical-unit-number.

If an interface is mounted on an original FPC, you can
apply to the interface the default exp classifier only. If an
interface is mounted on an enhanced FPC, you can define
and apply to it a new exp classifier.
JUNOS 5.4 Internet Software Configuration Guide: Interfaces and Class of Service

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Configure Scheduling Policy Maps
The dscp classifier classifies all incoming IPv4 packets, while the exp classifier handles MPLS
packet classification.

Configure Scheduling Policy Maps

You use scheduling policy maps to configure the forwarding classes that represent packet
queues and associate them with physical interfaces.

A scheduler configuration block specifies the buffer size, bandwidth, and priority for a queue.
It also specifies the RED drop profile for packets that fall within specification and out of
specification. To configure schedulers, include the schedulers statement at the
[edit class-of-service] hierarchy level:

[edit class-of-service]
schedulers {

scheduler-name {
buffer-size (percent percentage | remainder);
drop-profile-map loss-priority (low | high) protocol (non-tcp | tcp | any)

drop-profile profile-name;
priority (low | high | strict-high);
transmit-rate (rate | percent percentage | remainder | exact);

}
}

Once you define a scheduler, you can include it in a scheduler map that is used to map a
specified forwarding class to a scheduler configuration:

[edit class-of-service]
scheduler-maps {

map-name {
forwarding-class class-name scheduler scheduler-name;

}
}

When you have defined the map-name, you can associate it with an output interface:

[edit class-of-service]
interfaces {

interface-name {
scheduler-map map-name;

}
}

Interface wildcards are supported.

You cannot mix L2 and L3 classification on an interface.
For the purposes of this configuration, MPLS is considered
L3 classification.
CoS Configuration Guidelines 429

Configur e RED Dr op Profiles

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

430
You must configure each forwarding class in turn. The following default set of schedulers and
scheduler maps is provided with the installation:

[edit class-of-service]
schedulers {

network-control {
transmit-rate percent 5;
buffer-size percent 5;
priority low;
drop-profile-map loss-priority low protocol any drop-profile passive;
drop-profile-map loss-priority high protocol any drop-profile aggressive;

}
best-effort {

transmit-rate percent 95;
buffer-size 95;
priority low;
drop-profile-map loss-priority low protocol any drop-profile passive;
drop-profile-map loss-priority high protocol any drop-profile aggressive;

}
}
scheduler-map default {

forwarding-class best-effort scheduler best-effort;
forwarding-class network-control scheduler network-control;

}

Configure RED Drop Profiles

RED drop profiles are associated with the forwarding classes and loss priorities from the
scheduler-map you configured on the interface. To configure the drop profiles themselves,
include the drop-profiles statement at the [edit class-of-service] hierarchy level:

[edit class-of-service]
drop-profiles {

profile-name {
fill-level percentage drop-probability percentage;
interpolate {

fill-level value;
drop-probability value;

}
}

}

In this configuration, you include either the interpolate statement and its options, or the
fill-level and drop-probability percentage values. These two alternatives enable you to
configure either each individual drop probability at up to 64 fill-level/drop-probability paired
values, or a profile represented as a series of line segments.

If you configure the interpolate statement, you can specify
more than 64 pairs, but the system generates only
64 discrete entries.
JUNOS 5.4 Internet Software Configuration Guide: Interfaces and Class of Service

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Rewrite Packet Header Information
The line segments are defined in terms of the following graphical model: in the first
quadrant, the x axis represents the fill level and the y axis represents the drop probability.
The initial line segment spans from the origin (0,0) to the point (<l1>, <p1>); a second
line runs from (<l1>, <p1>) to (<l2>, <p2>) and so forth, until a final line segment
connects (100, 100). The system automatically constructs a drop profile containing 64 fill
levels at drop probabilities that approximate the calculated line segments.

Figure 23 shows sample line graphs contrasting use of the segment percentages (on the left)
and interpolated values (on the right):

Figure 23: Segmented and Interpolated Drop Profiles

Packet Loss Priority

The system supports two packet loss priority (PLP) designations, low and high.

The packet loss priority is used to determine the RED drop profile when queuing a packet.
You can set it by configuring a classifier or policer.

Rewrite Packet Header Information

You can rewrite the packet header bits because the logical interface transmits the packet
along with the forwarding-class and PLP information associated with the packet. The
rewrite-rules configurations define the mappings.

Table 27 shows the default mappings.

Segmented

100

75

50

25

0 25 50 75 100

D
ro

p
pr

ob
ab

ilit
y

(%
)

Fullness (%)

Interpolated

100

75

50

25

0 25 50 75 100

D
ro

p
pr

ob
ab

ilit
y

(%
)

Fullness (%) 17
04
CoS Configuration Guidelines 431

Rewrite Packet Header Inf ormation

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

432
Table 27: Default Packet Header Rewrite Mappings

See “Define Code-Point Aliases” on page 422 for the default bit definitions of DSCP, EXP, and
IEEE code points.

To configure a rewrite-rules mapping and associate it with the appropriate forwarding
class and code-point alias or bit set, include the rewrite-rules statement at the
[edit class-of-service] hierarchy level:

[edit class-of-service]
rewrite-rules {

(dscp | exp | inet-precedence) rewrite-name {
import (rewrite-name | default);
forwarding-class class-name {

loss-priority (low | high) code-point alias | bits;
}

}
}

To assign the rewrite-rules configuration to the output logical interface, include the following
configuration:

[edit class-of-service]
interfaces {

interface-name {
unit logical-unit-number {

rewrite-rules {
(dscp | exp | inet-precedence) rewrite-rule-name;

}
}

}
}

You can include interface wildcards for interface-name and logical-unit-number.

You can include Layer 2 and Layer 3 rewrite information in the same configuration.

Map To DSCP/EXP/IEEE/IP Map From Forwarding Class PLP Value

ef expedited-forwarding low

 ef “ high

 af11 assured-forwarding low

 af12 (DSCP/EXP) “ high

 be best-effort low

 be “ high

 nc1/cs6 network-control low

 nc2/cs7 “ high
JUNOS 5.4 Internet Software Configuration Guide: Interfaces and Class of Service

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Configure CoS-Based Forwarding
Configure CoS-Based Forwarding

CoS-based forwarding (CBF) enables you to control next-hop selection based on a packet's
class of service and, in particular, the value of the IP packet's precedence bits.

For example, you might want to specify a particular interface or next hop to carry
high-priority traffic while all best-effort traffic takes some other path. When a routing
protocol discovers equal cost paths, it can pick a path at random or load-share across the
paths either through hash selection or round robin. CBF allows path selection based on class.

You can apply CBF only to a defined set of routes. Therefore you must configure a policy
statement as in the following example:

[edit]
policy-options {

policy-statement my-cos-forwarding {
from {

route-filter filter-name;
}
then {

cos-next-hop-map map-name;
}

}
}

This configuration specifies that routes matching the route filter will be subject to the CoS
next-hop mapping specified by map-name. For more information about configuring policy
statements, see the JUNOS Internet Softw are Configur ation Guide: P olicy Frame work.

To specify a CoS next-hop map, include the forwarding-policy statement at the [edit
class-of-service] hierarchy level:

[edit class-of-service]
forwarding-policy {

next-hop-map map-name {
forwarding-class class-name {

next-hop [next-hop-name];
lsp-next-hop [lsp-regular-expression]

}
}

}

The JUNOS software applies the CoS next-hop map to the set of next hops previously
defined; the next hops themselves can be located across any outgoing interfaces on the
router. For example, the following configuration associates a set of forwarding classes and
next-hop identifiers:

[edit class-of-service forwarding-policy]
next-hop-map map1 {

forwarding-class expedited-forwarding {
next-hop next-hop1;
next-hop next-hop2;

}
forwarding-class best-effort {

next-hop next-hop3;
lsp-next-hop lsp-next-hop4;

}
}

CoS Configuration Guidelines 433

Configur e CoS-Based F orwarding

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

434
In this example, next-hopN is either an IP address or an egress interface for some next hop,
and lsp-next-hop4 is a regular expression corresponding to any next hop with that label. Q1
through QN are a set of forwarding classes that map to the given next hop. That is, when a
packet is switched with Q1 through QN, it will be forwarded out the interface associated with
the associated next hop.

This configuration has the following implications:

A single forwarding class can map to multiple standard next hops or LSP next hops. This
implies that load sharing is done across standard next hops or LSP next hops servicing
the same class value. To make this work properly, the software creates a list of the
equal-cost next hops and forwards packets according to standard load-sharing rules for
that forwarding class.

If a forwarding class configuration includes LSP next hops and standard next hops, the
LSP next hops are preferred over the standard next hops. In the preceding example, if
both next-hop3 and lsp-next-hop4 are valid next hops for a route to which map1 is
applied, the forwarding table includes entry lsp-next-hop4 only.

If next-hop-map does not specify all possible forwarding classes, the default forwarding
class is selected as the default. If the default forwarding class is not specified in the
next-hop map, a default is designated randomly. The default forwarding class is the class
associated with queue 0.

For LSP next hops, the JUNOS software uses UNIX regex(3)-style regular expressions. For
example, if the following labels exist: lsp, lsp1, lsp2, lsp3, the statement lsp-next-hop
lsp matches lsp, lsp1, lsp2, and lsp3. If you do not desire this behavior, you must use
the anchor characters lsp-next-hop “^lsp$", which match lsp only.

The final step is to apply the route filter to routes exported to the forwarding engine. This is
shown in the following example:

routing-options {
forwarding-table {

export my-cos-forwarding;
}

}

This configuration instructs the routing process to insert routes to the forwarding engine
matching my-cos-forwarding with the associated next-hop CBF rules.

The following algorithm is used when you apply a configuration to a route:

If the route is a single next-hop route, all traffic will go to that route; that is, no CBF will
take effect.

For each next hop, associate the proper forwarding class. If a next hop appears in the
route but not in the cos-next-hop map, it will not appear in the forwarding table entry.

The default forwarding class is used if all forwarding classes are not specified in the
next-hop map. If the default is not specified, one is chosen randomly.
JUNOS 5.4 Internet Software Configuration Guide: Interfaces and Class of Service

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Configure CoS-Based Forwarding
Override the Input Classification

For IPv4 or IPv6 packets, you can override the incoming classification, assigning them to the
same forwarding class based on their input interface, input precedence bits, or destination
address. You do so by defining a policy class when configuring CoS properties and
referencing this class when configuring a routing policy.

When you override the classification of incoming packets, any mappings you configured for
associated precedence bits or incoming interfaces to output transmission queues are
ignored. Also, if the packet loss priority (PLP) bit was set in the packet by the incoming
interlace, the PLP bit is cleared.

To override the input packet classification, do the following:

1. Define the policy class by including the class statement at the [edit class-of-service
policy] hierarchy level:

[edit class-of-service]
forwarding-policy {

class class-name {
classification-override {

forwarding-class class-name;
}

}
}

class-name is a name that identifies the class.

2. Associate the policy class with a routing policy by including it in a policy-statement
statement at the [edit policy-options] hierarchy level. Specify the destination prefixes in
the route-filter statement and the CoS policy class name in the then statement.

[edit policy-options]
policy-statement policy-name {

term term-name {
from {

route-filter destination-prefix match-type <class class-name>;
}
then class class-name;

}
}

3. Apply the policy by including the export statement at the [edit routing-option] hierarchy
level:

[edit routing-options]
forwarding-table {

export policy-name;
}

CoS Configuration Guidelines 435

Example: Configur e Class of Service

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

436
Example: Configure Class of Service

The following example includes classifiers, rewrite markers, and schedulers to configure a
class of service policy.

1. Define a classifier that matches IP traffic arriving on the interface. The affected IP traffic
has IP precedence bits with patterns matching those defined by aliases A or B. The loss
priority of the matching packets is set to low, and the forwarding class is mapped to best
effort (queue 0):

[edit]
class-of-service {

classifiers {
inet-precedence normal-traffic {

forwarding-class best-effort {
loss-priority low code-points [A B];

}
}

}
}

Following are the code-point alias and forwarding-class mappings referenced in the
normal-traffic classifier:

[edit]
class-of-service {

code-point-aliases {
inet-precedence {

A 000;
B 001;
...

}
}

}

[edit]
class-of-service {

forwarding-classes {
queue 0 best-effort;
queue 1 expedited-forwarding;
queue 2 assured-forwarding;
queue 3 network-control;

}
}

JUNOS 5.4 Internet Software Configuration Guide: Interfaces and Class of Service

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Example: Configure Class of Service
2. Use rewrite markers to redefine the bit pattern of outgoing packets. Assign the new bit
pattern based on specified forwarding classes, regardless of the loss priority of the
packets:

[edit]
class-of-service {

rewrite-rules {
inet-precedence clear-prec {

forwarding-class best-effort {
loss-priority low code-point 000;
loss-priority high code-point 000;

}
forwarding-class expedited-forwarding {

loss-priority low code-point 100;
loss-priority high code-point 100;

}
}

}
}

3. Configure a scheduler map associating forwarding classes with schedulers and
drop-profiles:

[edit]
class-of-service {

scheduler-maps {
one {

forwarding-class expedited-forwarding scheduler special;
forwarding-class best-effort scheduler normal;

}
}

}

Schedulers establish how to handle the traffic within the output queue for transmission
onto the wire. Following is the scheduler referenced in scheduler map one:

[edit]
class-of-service {

schedulers {
special {

transmit-rate percent 30;
priority high;

}
normal {

transmit-rate percent 70;
priority low;

}
}

}

CoS Configuration Guidelines 437

Example: Configur e Class of Service

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

438
4. Apply the normal-traffic classifier to all SONET/SDH interfaces and all logical interfaces
of SONET/SDH interfaces; apply the clear-prec rewrite marker to all Gigabit Ethernet
interfaces and all logical interfaces of Gigabit Ethernet interfaces; and apply the one
scheduler map to all interfaces:

[edit]
class-of-service {

interfaces {
so-* {

unit * {
classifiers {

inet-precedence normal-traffic;
}

}
}
ge-* {

unit * {
rewrite-rules {

inet-precedence clear-prec;
}

}
}
all {

scheduler-map one;
}

}
}

Following is the complete configuration:

[edit class-of-service]
classifiers {

inet-precedence normal-traffic {
forwarding-class best-effort {

loss-priority low code-points [A B];
}

}
}
code-point-aliases {

inet-precedence {
A 000;
B 001;
C 010;
D 011;
E 100;
F 101;
G 111;
H 111;

}
}
drop-profiles {

high-priority {
fill-level 20 drop-probability 100;

}
low-priority {

fill-level 90 drop-probability 95;
}
big-queue {

fill-level 100 drop-probability 100;
}

}

JUNOS 5.4 Internet Software Configuration Guide: Interfaces and Class of Service

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Example: Configure Class of Service
forwarding-classes {
queue 0 best-effort;
queue 1 expedited-forwarding;
queue 2 assured-forwarding;
queue 3 network-control;

}
interfaces {

so-* {
unit * {

classifiers {
inet-precedence normal-traffic;

}
}

}
ge-* {

unit * {
rewrite-rules {

inet-precedence clear-prec;
}

}
}
all {

scheduler-map one;
}

}
rewrite-rules {

inet-precedence clear-prec {
forwarding-class best-effort {

loss-priority low code-point 000;
loss-priority high code-point 000;

}
forwarding-class expedited-forwarding {

loss-priority low code-point 100;
loss-priority high code-point 100;

}
}

}
scheduler-maps {

one {
forwarding-class expedited-forwarding scheduler special;
forwarding-class best-effort scheduler normal;

}
}
schedulers {

special {
transmit-rate percent 30;
priority high;

}
normal {

transmit-rate percent 70;
priority low;

}
}

CoS Configuration Guidelines 439

Example: Configur e Class of Service

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

440
 JUNOS 5.4 Internet Software Configuration Guide: Interfaces and Class of Service

	CoS Configuration Guidelines
	Hardware Capabilities and Limitations
	Define Code-Point Aliases
	Configure Forwarding Classes
	Override Fabric Priority Queuing

	Classify Packets by Behavior Aggregate
	Configure Scheduling Policy Maps
	Configure RED Drop Profiles
	Packet Loss Priority

	Rewrite Packet Header Information
	Configure CoS-Based Forwarding
	Override the Input Classification

	Example: Configure Class of Service

